Skip Nav

FREQUENTLY ASKED QUESTIONS

Subjects & Tutors

❶Retakes can only be taken during a session when the exam is offered. On junior secondary level Year , Daniel has tutored a student from the Yew Chung International School on sine rule, cosine rule, graph sketching, quadratics equations, ratios and percentages.

Chat forums

Learn more
All Programs
Help & legal stuff

Biogas Gas made through the action of microorganisms on the remains of living organisms. Cell membrane The membrane around a cell which controls what moves in and out of the cell.

Central nervous system CNS The central nervous system is made up of the brain and spinal cord where information is processed. Chlorophyll The green pigment contained in the chloroplast that absorbs sunlight. Chloroplasts The organelles where photosynthesis takes place. Chromosomes Thread-like structures made of DNA that carry the genetic information found in the nucleus of a cell.

Clones Offspring produced by asexual reproduction which are genetically identical to their parent organism. Concentration gradient The gradient between an area where a substance is at a high concentration and an area where it the substance is at a low concentration.

Cytoplasm The water-based gel where the organelles of all living cells are suspended. Decomposers Microorganisms that break down waste products and dead matter. Denatured Enzymes that are denatured have unfolded protein structures and can no longer catalyse a reaction. Diffusion The net movement of particles of a gas or a solute from an area of high concentration to an area of low concentration along or down a concentration gradient.

DNA Deoxyribose nucleic acid, the material that makes up chromosomes. Ecosystem The total of the animals and plants living in an area, along with things which affect them such as the soil and the weather. Enzyme Protein molecules which function as biological catalysts. They change the rate of chemical reactions without being affected themselves at the end of the reaction.

Evolution The slow change in living organisms over long periods of time as those best fitted to survive breed successfully. Gene A short section of DNA carrying genetic information codes fora single protein or characteristic. Hemoglobin The red pigment which carries oxygen around the body, found in red blood cells. Homeostasis The maintenance of constant internal body conditions such as temperature and blood pH.

Hormones Chemical messages secreted by special glands and carried around the body in the blood, e. Limiting factors Factors which limit the rate of a reaction, e. Meiosis A two-stage process of cell division which halves the chromosome number of the daughter cells. It is involved in making the gametes for sexual reproduction. Menstrual cycle The reproductive cycle in women regulated by hormones.

Metabolic rate The rate at which all the reactions of your body take place, particularly cellular respiration. Microorganism Bacteria, viruses and other small organisms which can only be seen using a microscope. Mitochondria Organelles responsible for aerobic cellular respiration in cells. Mitosis Asexual cell division where two genetically identical daughter cells are formed. Mutation Any change in the genetic material of an organism. Natural selection The process by which evolution takes place.

Organisms produce more offspring than the environment can support so only those which are most suited to their environment will survive to breed and pass on their useful characteristics. Neurones Basic cells of the nervous system that carry minute electrical impulses around the body. Nucleus of a cell An organelle found in many living cells that contain the genetic information. Organelles Membrane-bound structures in a cell which carry out particular functions.

Osmosis The passive movement of water from an area of high concentration of water to an area of low concentration of water along a concentration gradient. Partially permeable Allowing only particular substances to pass through.

Pathogens Microorganisms which can cause disease in humans and other organisms. Photosynthesis The process by which plants produce their own food using carbon dioxide, water and light energy. Respiration The process by which food molecules are broken down to release energy for living cells.

Ribosomes The site of protein synthesis in a cell, found in the cytoplasm. Specialised Adapted for a particular biological function. Stem cells Undifferentiated cells that have the potential to form a wide variety of different cell types. Stomata Openings in the leaves of plants that allow gases to enter and leave the leaf. They are opened and closed by the guard cells.

Synapses The gaps between neurones where the transmission of information is passed chemically rather than electrically. Transpiration The loss of water vapour from the leaves of plants through the stomata when they are opened to facilitate gas exchange for photosynthesis. Villi The finger-like projections from the lining of the small intestines which increases the surface area for the absorption of nutrients into the blood. Cell Structure, Division and Transport Animal and plant cells have many features in common, such as a nucleus, cytoplasm and cell membrane.

Plant cells have a cell wall made of cellulose, a large vacuole containing cell sap, and may contain chloroplasts for photosynthesis. Animal cells store carbohydrates as glycogen while plant store starch. The nucleus is the store of genetic information, made of DNA which are arranged as chromosomes. Humans have 46 chromosomes in every cell. Genes are parts of chromosomes that code for one protein. Mitosis is used for growth and repair, and is the only method of reproduction in asexually reproducing organisms such as bacteria.

The parent cell divides into two genetically identical clones daughter cells. Meiosis is used to make gametes sex cells in sexually reproducing organisms.

The parent cell divides twice to give four non-identical daughter cells with half the number of chromosomes as the parent cell. Cell specialisation is important in higher organisms because of the varying of different functions that have to be performed. All cells contain the same genes but develop differently. Groups of specialised cells form tissues, which join together to form organs. Groups of organs work together in organ systems. Diffusion is the net movement of a substance from a high to low concentration, or down a concentration gradient.

Diffusion increases with temperature and with smaller particles, which move faster. Osmosis is a special kind of diffusion, involving the movement of water from a dilute solution of a substance to a concentrated solution across a partially permeable membrane, which only allows water molecules to pass through but not the dissolved substance.

Active transport is used to move substances from a low to a high concentration. Active transport requires special membrane proteins and energy from respiration. Nutrition Enzymes are biological catalysts and control nearly all reactions in the body. Enzymes are very specific for their substrate due to their shape. Enzymes usually work best at body temperature and neutral pH. Enzymes are responsible for digestion of food. Amylases break down starch, proteases break down protein, and lipases break down fat.

To test for fats, shake the substance in ethanol and then add a few drops of water. A milky white emulsion forms in the water if fat is present. Digestion occurs throughout the alimentary canal. In the mouth, food is chewed into small pieces and saliva containing amylase is released to soften food and digest starch.

The stomach releases gastric juice which contains protease, to digest proteins, and hydrochloric acid, to kill microbes. The liver makes bile that contains bile salts, that break down fat into smaller droplets emulsification.

Bile is stored in the gall bladder. The pancreas makes digestive enzymes including proteases, amylases and lipases, and these are released into the small intestine.

The first part of the small intestine is called the duodenum. The duodenum is relatively short and it is where the digestive enzymes from the pancreas are secreted. The second part of the small intestine is called the ileum, which is specialized for the absorption of digested food. The ileum is long and has a very large surface area. The inside of the ileum is folded and the folds have thousands of finger-like projections called villi.

Furthermore, the cells on the villi have small projections called microvilli. Nutrients are absorbed by active transport. The Circulatory System Arteries carry oxygenated blood away from the heart. They have a thick wall with plenty of elastic and muscle tissue to withstand the high pressure. Blood is pumped at high pressure so valves are not needed.

Veins carry deoxygenated blood towards the heart, at low pressure. Valves are needed to prevent the back-flow of blood. Veins have thinner walls. Capillaries join the arteries to the veins. They are very thin one cell thick and are responsible for delivering nutrients to and removing wastes from all tissues in the body. Plasma leaks out of the capillaries into the tissues, which is known as tissue fluid.

The tissue fluid carries glucose, amino acids, and other useful substances to the cells. Oxygen diffuses out of the capillaries into the tissues, while carbon dioxide diffuses into the blood. Most tissue fluid returns by osmosis, and excess tissue fluid enters the lymphatic system through the lymph vessels.

Humans have a double circulation, which means that blood passes the heart twice in every circuit. Thus, blood is returned to the heart to gain high enough pressure to get through the capillaries of the body. The heart is a muscular pump made of a special type of tissue called cardiac muscle.

The cardiac muscle stimulates itself by electrical impulses to produce a regular beat. The heart is composed of four chambers: The top two chambers, the atria, receive the blood from the veins and then pump them into the arteries. The lower two chambers, the ventricles, pump blood out to the arteries.

Atrioventricular AV valves also known as the bicuspid valve on the left and the tricuspid valve on the right close when the ventricles are pumping, to prevent blood from returning into the atria. Semi-lunar valves close after blood is pumped out of the ventricles to prevent blood from returning to the ventricles. The right side of the heart carries deoxygenated blood that has returned from the body and is pumped to the lungs.

Blood enters the right atrium through the vena cavae, and is pumped to the lungs through the pulmonary artery. The left side of the heart carries oxygenated blood that has returned from the lungs and is pumped to the body. Blood enters the left atrium through the pulmonary vein, and is pumped to the body through the aorta. The Respiratory System Breathing ventilation is a set of muscular movements that draw air in and out of the lungs.

The lungs help the body take in oxygen and remove carbon dioxide. The pleural membrane in the thorax forms an airtight pleural cavity. When the diaphragm contracts and the intercostal muscles contract, the volume of the pleural cavity increases, reducing the pressure. Air moves into the lungs and the lungs expand inhalation. The opposite occurs during exhalation. Gaseous exchange occurs in the millions of alveoli in the lungs, which are highly adapted for efficient gas exchange.

The walls of the alveoli are only one cell thick, and are surrounded by capillaries. The surface of the alveoli are moist so that gases can dissolve.

Carbon dioxide diffuses from the blood into the alveoli while oxygen dissolves into the capillaries. Respiration is the breakdown of food to generate energy. It is not the same as ventilation! In aerobic respiration, glucose and oxygen combine to make carbon dioxide and water, and energy. In humans, this produces lactic acid and energy. In yeast, this produces carbon dioxide, ethanol and energy. Anaerobic respiration by yeast is how breweries make beer and wine.

Anaerobic respiration in humans releases much less energy than aerobic respiration. When the vigorous exercise stops, excess oxygen is breathed in to break down the lactic acid. A calorimeter can be used to measure the energy content of food. Food is burnt in a closed container, and the temperature rise in the surrounding water is measured. The Nervous System All living organisms can respond to their environment sensitivity. Plants usually respond more slowly than animals.

However, the order of events is always the same: This coordinates all the information and sends a message to the effectors to bring about a response. These messages are sent by nerves faster or hormones slower. Different receptors in the body respond to different stimuli. Receptors are often gathered together into sense organs, that have other various structures that help the receptors gain more information. The eye is a sense organ for detecting light. Light enters through the pupil, and is focused onto the retina by the cornea and the lens.

The size of the pupil can be reduced by the muscles of the iris in bright light, by contracting the radial muscles and relaxing the circular muscle. When looking at close objects, the ciliary muscles contract and the lens becomes more rounded and powerful.

The ciliary muscles relax when viewing distant objects. Rods and cones are the receptor cells that are concentrated in the fovea of the retina. They detect light and send messages to the brain along the optic nerve. The cones require bright light and can detect colour in detail.

The rods can work in dim light, but can only detect in black and white, in low detail. Neurones are specialized cells that carry messages around the body in the form of electrical charges.

Sensory neurones carry electrical messages from the sense organs to the CNS. Motor neurones carry electrical signals from the CNS to the effectors, such as muscles and glands. Relay neurons relay messages between neurones in the CNS.

Nerves are collections of thousands of neurones. Neurones connect to each other through a synapse, which is a small junction where the message is transmitted through chemical signals neurotransmitters instead of electrical. The neurotransmitter is secreted from the synaptic knob of the first neurone and diffuses across the junction, where it stimulates a new impulse in the second neurone, before quickly being destroyed by enzymes.

In a reflex action, the message is passed straight from the sensory neurone to the motor neurone via a relay neurone. This does not require conscious thought and is very quick, which helps protect the body from damage. In a voluntary action, the message is relayed into the higher centres of the brain. The Endocrine System The endocrine system is a system of glands that secretes hormones into the bloodstream. Hormones are chemical messengers that travel in the bloodstream to their target organ.

The thyroid gland secretes thyroxine to control the metabolic rate. The pancreas secretes insulin to control blood glucose level. Sex organs develop during puberty, and they start to produce sex cells. The ovary secretes oestrogen to control the menstrual cycle in females, and progesterone to maintain pregnancy.

The testis secretes testosterone in males. These result in secondary sexual characteristics, such body hair. The stimulation and release of egg cells is described by the day menstrual cycle, which is regulated by FSH, LH, oestrogen and progesterone. FSH stimulates the ovum to ripen, which causes the release of oestrogen. Oestrogen promotes the growth of the uterus lining and stops the release of FSH, preventing more than one egg from being released at once. LH is released which stimulates ovulation, and the corpus luteum secretes progesterone to maintain the thick uterus lining.

After ovulation, if the egg is not fertilized, the corpus luteum breaks down and menstruation occurs. If the egg is fertilised, the embryo sends a message to the ovary stopping the corpus luteum from breaking down.

Progesterone production carries on and menstruation does not occur. Hormones can be used to increase or decrease fertility. The contraceptive pill contains oestrogen and progesterone to stop FSH from being released by the pituitary gland. On the other hand, FSH or similar hormones can be injected to try to stimulate the ovary to produce eggs this may lead to multiple births.

Male sex hormones increase muscle growth and aggression. Athletes may illegally use these hormones, known as anabolic steroids, to improve their strength and performance. Homeostasis Homeostasis is maintaining a constant internal environment. This is regulated by both the nervous system and the endocrine system. Insulin converts excess glucose into glycogen, to be stored in the liver. Diabetics do not produce enough insulin naturally, and require insulin injections in order to control the level of glucose in their blood.

Kidneys control waste and the amount of water in our bodies. The main waste product is urea, the waste material produced from the breakdown of proteins. The kidney has thousands of fine tubules, called nephrons. Glucose and most water is later reabsorbed, leaving behind a concentrated solution of salt and urea called urine.

When we are thirsty, our body conserves water by secreting ADH from the pituitary gland. This hormone causes more water to be reabsorbed. We can produce heat from respiration. Core body temperature is monitored and controlled by the brain. Temperature receptors send nerve impulses to the skin, which help to regulate our body temperature.

When we feel hot, sweating cools the body because water evaporating from the skin absorbs heat energy from the body.

Vasodilation is the expansion of blood capillaries near the skin surface, which allows more blood to flow near the surface of the skin, increasing the rate of heat loss. When we feel cold, shivering increases the rate of respiration and more energy is released as heat. Vasoconstriction narrows the blood vessels near the skin and the rate of heat loss is reduced. Microbes, Food and Disease Microbes reproduce quickly when they have sufficient food, water, and the right temperature and pH.

Aerobic bacteria need oxygen, anaerobic bacteria do not. Some microbes are very useful for the production of food. Yeast is used to make bread and wine, and bacteria is used to make yoghurt, cheese, vinegar. Fermenters are used to grow a single type of microbe under carefully controlled conditions.

The conditions must be sterile to kill unwanted microbes, with the ideal amount of temperature and food. Fermenters can be used to make mycoprotein, enzymes or drugs such as insulin.

Microbes can also be used to treat sewage to break down organic substances. Methane and carbon dioxide produced can be used for fuel or used to power machinery. Most microbes are harmless, however, some microbes cause disease and are termed pathogens. It is spread by bodily fluids. Parasites are larger than microbes. The round worm lives in the gut of cats and dogs.

The malaria parasite lives in the blood of mosquitoes. An organism that transmits a disease is called a vector.

Penicillin is an antibiotic, a drug that can be swallowed to kill bacteria. Painkillers help relieve pain, but they do not kill microbes.

Bacteria resistance to antibiotics spreads quickly due to their high rate of reproduction. It is important to avoid overuse of antibiotics to reduce the antibiotic resistance. Bacteriophages are viruses that attack bacteria. They can potentially be used to kill pathogenic bacteria. When a microbe antigen enters our body, our white blood cells make antibodies to destroy the antigen. Memory cells remain in the blood to produce more antibodies if the same antigen enters the body again.

Vaccines are dead or weakened bacteria or viruses that are introduced into our bodies. Our body makes antibodies to target the harmless antigen, so that when the real virulent pathogen enters our body, we have the memory cells and antibodies ready to destroy it before it can multiply and cause disease.

Active immunity is when we make our own antibodies to fight disease. Passive immunity is when antibodies are injected into a person or provided from mother to baby.

This provides instant protection but is temporary because once the antibodies have gone, the person does not have memory cells for that antibody. Vaccines do not always give long-term protection. Some viruses such as influenza and the common cold mutate rapidly and change their outer coat shape, so the old antibodies do not fit the shape of the virus.

Plant Biology Photosynthesis is the process where plants make the food glucose, from carbon dioxide and water. The green pigment chlorophyll, found in chloroplasts, absorbs light energy for photosynthesis. Chloroplasts are found mainly in the palisade layer, and the spongy layer contains air spaces to allow gas exchange.

Stomata are found on the lower surface of the leaf, and allow gas exchange. The vascular bundles contain xylem vessels, which transport water, and phloem vessels, which transport glucose.

Plants respire all the time, even during the day. Although photosynthesis does not occur during the night, it takes place much faster than respiration during the day. Photosynthesis is controlled by light, the concentration of carbon dioxide and temperature.

As light or carbon dioxide increases, so does the rate of photosynthesis, until the rate levels out at a new optimum level. The rate is then stable until the new limiting factor is removed.

For temperature, any increase above the optimum level causes the rate to slow, as high temperature denatures the enzymes. Glucose made in the chloroplasts can be used for respiration, converted into starch for storage, converted into cellulose for cell walls, used to make more chlorophyll, or converted into fats and protein.

For healthy growth, plants need minerals. Without nitrates for proteins, plants show stunted growth and yellow older leaves. Without phosphates for make DNA, cell membranes and chemical reactions, plants show purple younger leaves. Without potassium to help enzymes work, plants show yellow leaves with dead spots. Without magnesium for chlorophyll, plants show stunted growth with pale yellow leaves. Plant hormones called auxins mediate plant responses. Phototropism — shoots grow towards light.

Geotropism — shoots grow away from gravity, roots towards gravity. Hydrotropism — roots grow towards water. Auxins make cells grow longer. In shoots, auxin accumulates on the dark side of the soot.

This causes the cells on the dark side to lengthen and the shoot bends toward the light. Hormone rooting powder promotes the growth of roots in shoot cuttings. Unpollinated flowers can be treated to produce seedless fruits. Ripening of fruits can be slowed down in order to keep them fresh. Some weedkillers contain a synthetic hormone which causes broad leaf plants to overgrow and die.

Transpiration is the continuous movement of water up from the roots of the plants to the leaves. Water enters the roots through the root hairs by osmosis, and travels up the stem through the xylem. Xylem vessels are dead, hollow tubular cells joined together that have had the ends of the cells removed. Water reaches the leaf cells and evaporates, passing out through the stomata by diffusion. Higher temperature increases the movement of water molecules out of the leaf.

Higher humidity reduces the concentration gradient so water molecules leave the leaf slower. Wind blows away the water molecules near the stomata so that a large diffusion gradient is maintained.

Transpiration can pull water up trees metres tall because of the cohesive and adhesive properties of water — water molecules stick to themselves and to the walls of the xylem. The evaporation of water from the leaves pulls the continuous column of water up from the roots of the plant. Plants want to avoid losing excess water by transpiration. Stomata close at night to conserve water, and they are located on the underside of the leaf to protect them from sunlight and the wind.

The top surface of the leaf is often covered with a water-impermeable, waxy layer. Plants uptake minerals through the roots through diffusion or by active transport, which requires energy. Plant cells are enclosed in a rigid cell wall. When water enters the plant by osmosis, the cell membrane is pushed hard against the cellulose wall, and the cell becomes turgid.

This gives the plant support. If water leaves a plant cell by osmosis, the cytoplasm shrinks and the cell becomes flaccid. Eventually, the plasma membrane detaches from the cell wall plasmolysis. The cell collapses and the plant wilts. The phloem is made of living cells that are joined to each other by holes that connect the cytoplasm together, forming a continuous system of living material to transport sugar and other nutrients.

Variation, Inheritance and Evolution There is variation in members of a species. Some variation is genetic or inherited from our parents, while some is a result of our environment. Some traits, like weight or intelligence, are affected by both. Variation can be continuous showing a range of phenotypes, such as height or discontinuous phenotypes fall into distinct categories, such as blood group. Sexual reproduction involves the fusion of gametes.

Body cells have 46 chromosomes, or 23 pairs diploid , while gametes have 23 chromosomes haploid. A baby can receive either one of the 23 pairs from its mother and either one of the 23 pairs from its father, producing genetic diversity.

Mitosis produces genetically identical cells, or clones. Bacteria use mitosis as a form of reproduction asexual reproduction. Only one parent is required and the offspring are clones of the parent. The sex chromosomes are the 45th and 46th chromosomes in humans. Females are XX, males are XY. Alleles are different versions of the same gene.

Humans have two copies of each gene in their cells. During meiosis, the alleles of a gene separate into different gametes law of segregation. During fertilization, different traits are inherited independently of each other law of independent assortment. These laws were formulated by an Augustinian monk, Gregor Mendel. The genotype of an organism is its particular combination of alleles.

The phenotype is its appearance. Since there can be more than one allele for a gene, an organism can have two of the same allele homozygous or have two different alleles heterozygous.

In the case of a heterozygous individual, the dominant allele is always expressed. A recessive allele is only expressed if no dominant allele is present. Dominant alleles are usually represented with a capital letter, and recessive alleles with small letters. Monohybrid inheritance can be represented using a Punnett square. Two heterozygous individuals would produce offspring with a 3: Some diseases can be inherited.

Cystic fibrosis is a recessive disease that affects the lungs and digestive system. Some plants can reproduce asexually, using runners e.

Commercial growers can clone plants by taking cuttings. A modern way of cloning plants very quickly is to use micropropagation, which involves tissue culture of plant cells in a laboratory. Selective breeding involves breeding individuals who have the desired characteristics. Farmers do this to produce larger chicken eggs, different breeds of dog, or crops with resistance to disease. Charles Darwin developed the theory of evolution by natural selection. Organisms produce more offspring than can survive, and only those with characteristics beneficial to their environment will pass on their traits to their offspring.

Evolution is supported by circumstantial evidence, like the fossil record. Genetics and genetic engineering DNA is a genetic code that consists of four bases — adenine, thymine, guanine and cytosine. Every three bases code for one amino acid, which join together to make proteins. One gene codes for one protein. The structure of DNA is a double helix. The two strands are held together by A-T and G-C base pairing. The bases are held together by a ribose sugar attached to a phosphate molecule.

DNA copies itself just before the cell divides, so each new cell has an exact copy. It is a single-stranded with thymine replaced by uracil.

Each mRNA is a copy of a single gene. Once the mRNA leaves the nucleus, it enters a ribosome where a protein is made from the encoded message. Scientists have decoded all the bases in the human DNA, so we now have a genetic map of all genes. Mutation is a change in DNA, that can be caused by radiation including X-rays and UV light from the sun and chemical mutagens as in cigarettes.

If a mutation occurs in a gamete, the offspring may develop abnormally and pass on the mutation to their own offspring. If the mutation occurs in a body cell, it could start to multiply uncontrollably, known as cancer. Using in vitro fertilisation IVF , we can identify genetic diseases in the embryo before the baby is born. A cell is removed from the embryo for genetic screening. A gene probe is attached to the marker, and the probe attaches itself to the faulty gene if present, indicating that the embryo has the genetic disease.

With increased modularisation of subjects, the amount of time that young adults are spending being examined in the UK has risen considerably. It was estimated in a report by educationalists that by the age of 19 children will have spent an entire year of their school education being assessed.

However, this will not be the case for all A levels: Chinese will also move to UMS, but instead of two units, it will move to three units: AS will have two units, A2 will have one. It is the first A level to have an odd number of units since Curriculum As a result of dislike of the modular system, many schools now offer the alternative International Baccalaureate Diploma qualification.

The Diploma Programme, administered by the International Baccalaureate , is a recognised pre-university educational programme. Former British Prime Minister Tony Blair recently suggested that one state school in every county should offer the International Baccalaureate Diploma Programme as an alternative to A levels.

The A-level has been criticised for providing less breadth since many A-level students do not generally study more than three subjects in their final year. English Language, English Literature, French, German, Spanish , and a "creative" subject like Art Studies , in many cases students choose three closely linked subjects, for instance, Mathematics, Physics and Chemistry or Sociology, Psychology, and Politics.

This is in part due to university entrance requirements, which, for degree programs such as medicine, may require three related A-level subjects, but non-traditional combinations are becoming more common "British Council Australia Education UK". However, others disagree, arguing that the additional AS-level s studied would already have provided more breadth compared with the old system. Students applying to universities before receiving their A Level results typically do so on the basis of predicted grades, which are issued by schools and colleges.

A possible reformation would be something called the post-qualifications applications system PQA , where applicants apply to university after they receive their results.

However, a more recent UCAS report shows that although the reliability of predicted grades declines in step with family income, this can still lead to an over-prediction effect for lower income groups. From Wikipedia, the free encyclopedia. List of Advanced Level subjects. British Educational Research Journal. Archived from the original PDF on 24 December Retrieved 6 January Retrieved 16 August Fulltime educational courses for to year-olds. Retrieved 18 August Archived from the original on 26 March Retrieved 22 October Joint Council of Qualifications.

National percentage figures for A level grades". Record drop in top grades as fewer get university places". England and Wales June ". Retrieved 14 August The Times Digital Archive. If one compares O levels England from s or earlier, and Higher grades from s or earlier and A levels from s or earlier, and O grades Scotland from s, all with modern National5, Highers, A levels and GCSE exams, one will see that the exams from earlier decades are much harder.

Retrieved 5 June Retrieved 11 June Retrieved 5 January Retrieved 13 August Retrieved 12 June Retrieved 2 January Retrieved 5 August Archived from the original PDF on Check date values in: Retrieved 17 July Year One Year Two. Year Ten Year Eleven. Year Twelve Year Thirteen. Taking a refresher course with ITS would be a good way to improve your chances at getting a better grade.

Not if you are retaking a unit with the same exam board. You can retake any unit you want. The board will take your best result for that unit and that is the mark that will be considered for an award. You will receive the best mark of the unit or units being retaken. As long as your exam centre applies again for the appropriate cash-in, a new certificate will be generated if you qualify for an award.

There are many educational opportunities for students of different ages and levels in the United Kingdom. In the UK, including England, Wales, Scotland and Northern Ireland, it is possible to access a large number of independent schools which take students from international locations and of all school ages. In order to find one that is suitable for you, look at the frequently asked questions which include links to information about the education system in the UK.

ITS has many years experience sending students to UK schools. You can also contact our UK education consultants for specific information. The UK has compulsory education for all students between the ages of 5 and Children usually begin primary school at five years old and generally move to secondary school when they turn eleven.

There are national exams known as Standard Assessment Tests SATs which can independently assess both students and schools against the national standard for subjects. There are schools which are funded by the government state-funded schools and schools which are privately- funded known as private or independent or public schools.

Students who attend a state-funded school receive their education free of charge. In privately-funded schools, students pay fees and are usually selected through an entrance test and sometimes an interview. ITS helps students prepare for school entrance exams and interviews. International students usually attend independent schools, especially those with a high academic success rate which helps them move on to a place at a UK university when their schooling is completed.

The excellent education offered by many independent schools, and the strong English speaking environment offers a student many opportunities both at school and in the future. Many independent schools are also boarding schools and charge for both the tuition and boarding they provide students.

Until the end of compulsory education there are three main compulsory subjects — Maths, English and Science. However, there are also foundation subjects and students also study these or many of them. There are also sometimes subjects such as religious studies.

A-level students usually have free choice over the subjects they wish to study, although it is also important to bear in mind any pre-requisite subjects required for your target university course.

It is common for students to take between 5 and 10 subjects at GCSE level. Once compulsory schooling ends, students might go on to take a vocational programme of study, such as the GNVQs General National Vocational Qualifications or the A-levels if they hope to apply to university later. There are of course a range of other qualifications which students might take and which articulate with a number of higher education pathways.

As there can be a lot of competition for school places, especially at top Independent schools, it is common to be asked to sit an entrance test. There is also sometimes an interview. As the new academic year begins in September, it is a good idea to start your preparations one year before you intend to go.

Many entrance tests are held in November, although it is possible to secure a place later than that. Contact Us using the form below or you can also visit our contact us page. What is the difference between Edexcel International Examinations and Cambridge?

What is the difference between online learning and distance learning? How many times per year are the exams offered? When are the exams offered? When is the enrollment deadline?

How much does it cost? When do the results come out? What happens if I am dissatisfied with my results? Can I get my exam paper back? I have lost my certificate what can I do? The exam board can help you. They will charge for a replacement certificate. Can I get extra time on my examinations? What happens if I miss my exam through no fault of my own?

When should I register? What is the registration closing date? How do I register as a private candidate? Can I register for some exams with ITS as a private candidate? Can I complete my A-levels through distance learning?

Which A-level subjects can I take online? What do A-level, AS and A2 mean? Can I retake an exam if I am unhappy with my mark? How much is the exam fee? Can I enrol through multiple exam centres? Do universities accept an A-level in Chinese? How do the A-levels compare to the IB? Where can I purchase past exam papers in Hong Kong?

Can ITS schools give a predicted grade for my university application? What can I do if I lose my certificate? Where can I find out about going to university in the UK? Retakes can only be taken during a session when the exam is offered. What happens to my old A-level result when I resit? Study in the UK There are many educational opportunities for students of different ages and levels in the United Kingdom.

So if I want to study for some or all of my secondary education in the UK, what can I expect? What is the education system like in the UK? What types of schools are found in the UK? Which subjects are studied at school? Is information about curricula and exams available?

What qualifications are available? How do I apply? Education is the most powerful weapon which you can use to change the world.

Search form

Main Topics

Privacy Policy

OCR is a leading UK awarding body, providing qualifications for learners of all ages at school, college, in work or through part-time learning programmes.

Privacy FAQs

Made on powerpoint. 13 slides with all content to be printed off on A4 and used as a revision booklet.

About Our Ads

AQA provides qualifications that enable students to progress to the next stage in their lives. We also support teachers to develop their professional skills. OCR GCSE Design and Technology: Food Technology qualification information including specification, exam materials, teaching resources, learning resources.

Cookie Info

Advanced level qualifications are generally studied during the ages of after a student has taken their GCSE level qualifications. As the name suggests the level of study in the subjects is at a considerably higher level . The University of Arizona (UA) is the flagship institution in the State of Arizona and offers graduate programs in more than areas of study. Graduate programs of study are described here in our Graduate Catalog and Program Descriptions.